
GETTING STARTED WITH THE EMP
FRAMEWORK – PART 6
ANDY ROSE, IMPERIAL COLLEGE LONDON

CREATING AN ADDRESS TABLE

• Copy the example into the local repo

• Could start from scratch but that would be tedious

• Modify the dep file to point to the new address table:

mkdir ~/my-firmware/src/my-algo-repo/an-algo/addr_table

cp ~/my-firmware/src/emp-fwk/components/payload/addr_table/emp_payload.xml

~/my-firmware/src/my-algo-repo/an-algo/addr_table/my_payload.xml

addrtab my_payload.xml

CREATING AN ADDRESS TABLE

• Modify the address tables to describe the registers you have just created

• Change

• To

<node id="dummy_payload" address="0x0" fwinfo="endpoint;width=31"/>

<node id=“My 1st register" address="0x00"/>

<node id=“My 2nd register" address="0x1F"/>

CREATING AN ADDRESS TABLE

• You can also add a permissions attribute

• “read” or “r”

• “write” or “w”

• “readwrite” or “rw” (default)

• You can also add description attributes to document each entry

RAMS AND FIFOS

• RAMs and FIFOs have two additional attributes

• Attribute “size” specifies the maximum number of contiguous reads/writes

• Attribute “mode” specifies whether or not to increment the IPbus address on

each operation

• “non-incremental” or “non-inc”

• “incremental” or “inc”

CREATING AN ADDRESS TABLE

• XML is naturally hierarchical

• Just like modules within modules within modules in firmware

• IPbus address tables support hierarchy and referencing of other files

• Note:

<node id=“My 1st register" address="0x00"/>

<node id=“My 2nd register" address="0x1F"/>

Addresses are relative to their parent node, so we only list the part we actually set

CREATING AN ADDRESS TABLE

• Even though IPbus is word-oriented, it is convenient to be able to label

individual bits

• This is done using the “mask” attribute

• All masking and bit-shifting operations will be done “under-the-hood”

• i.e. Reading “MSB” above will return 0x0 or 0x1, not 0x8000000

<node id="register" address="0x0">

<node id="LSB" mask="0x0000001"/>

<node id="MSB" mask="0x8000000"/>

<node id="The_Rest" mask="0x7FFFFFFE"/>

</node>

WARNING

• EMPbutler is an “easy access” tool

• It is to get systems up-and-running quickly

• It is for beginners

WARNING

• EMPbutler is an “easy access” tool

• It is to get systems up-and-running quickly

• It is for beginners

• EMPbutler deliberately does not implement a

general-purpose write-access method

• Since that would be like handing a monkey a

loaded gun

WARNING

• The safety mechanism on the gun is that the user must write code to perform

write-access

• Via

• C++

• Python

UHAL

• uHAL is the software partner to IPbus

• Written in C++

• Compiled & distributed as “library + headers” via RPM for a number of

platforms

• Available through your favourite package-manager

• Can also be compiled from source

USER-SIDE C++

• For long-term experimental running, you will most-likely use the C++ API

• Just a matter of building against the libraries

• For GCC -I/opt/cactus/include –L/opt/cactus/lib

-lpthread \

-lboost_filesystem -lboost_regex -lboost_system -lboost_thread \

-lcactus_extern_pugixml -lcactus_uhal_log -lcactus_uhal_grammars \

-lcactus_uhal_uhal

USER-SIDE PYTHON

• For simplicity of getting started, Python-bindings of the C++ library are also

provided

• We will use these

• The Python API deliberately matches the C++ API very closely

• So porting from Python to C++ should be relatively painless

• Simply replace Python lists with C++ std::vector

LET’S WRITE SOME PYTHON TO WRITE SOMETHING

• In the my-software directory, create a new python script

• Obviously, the first thing to do is to import the API

• Add import uhal

LET’S WRITE SOME PYTHON TO WRITE SOMETHING

• We need to tell our code what hardware we are talking to

• Remember the connection file? We need it again!

• Add

• And use the ConnectionManager to create a device by name

• Add

ConnFile = uhal.ConnectionManager("file://connections.xml")

MyBoard = ConnFile.getDevice(“my-board")

LET’S WRITE SOME PYTHON TO WRITE SOMETHING

• We need to tell our code what register we are talking to

• Add

• We could also do

MyReg = MyBoard.getNode(“payload").getNode(“My 1st register")

MyReg = MyBoard.getNode(“payload.My 1st register")

LET’S WRITE SOME PYTHON TO WRITE SOMETHING

• And we want to write some data to it, so

• Add

• Add as many writes to as many registers as you like

MyReg.write(0xC0FFEE00)

NOTE

• TO OPTIMISE BANDWIDTH USAGE, UHAL USES A DELAYED DISPATCH MODEL

• THE WRITE OPERATION WE JUST PERFORMED DOES NOT ACTUALLY TALK TO THE

HARDWARE, IT ADDS THE WRITE OPERATION TO A QUEUE

• This doesn’t normally causes the user a headache for write operations, but

read operations are a different matter

LET’S WRITE SOME PYTHON TO WRITE SOMETHING

• So let’s commit our operations to hardware

• Add MyBoard.dispatch()

EXERCISE

• Save your script

• Run it

• Use EMPbutler to inject a counter and capture some data

• Prove to yourself that your python script has done something

LET’S WRITE SOME PYTHON TO READ SOMETHING

• Let’s read our board register back

• Add value = MyReg.read()

LET’S WRITE SOME PYTHON TO READ SOMETHING

• Let’s read our board register back

• Add

• REMEMBER, uHAL uses delayed dispatch.

• “value” is NOT a number

• Try adding:

• Running script should raise an exception

value = MyReg.read()

print(“{0:08x}".format(value))

LET’S WRITE SOME PYTHON TO READ SOMETHING

• Add a dispatch between the read command and the print command

• Running the script should now print the value you programmed into the FPGA

IF YOU HAVE A LOT OF REGISTERS…

• You might have noticed that if you have a lot of registers, explicitly writing out

each name would get a bit tedious

• uHAL lets you use Regular-Expressions to get a list of nodes matching names

or

• Which you can then iterate over

MyRegList = MyBoard.getNode(“payload").getNodes(“My .* register")

Note the “s”

MyRegList = MyBoard.getNodes(“payload\.My .* register")

IF YOU HAVE A LOT OF REGISTERS…

• The “Node” object has the methods

• to return it’s “local” name

• to return it’s “full” name

• Useful when iterating over objects returned by a regex search

getId()

getPath()

OTHER USEFUL INCANTATIONS

• tells you whether it is “read”, “write” or “readwrite”

• tells you whether it is a register, a RAM or a FIFO

• tells you the size of the endpoint in 32-bit words

getPermissions()

getMode()

getSize()

READING AND WRITING RAMS & FIFOS

• Accessing RAMs and FIFOs is similar to registers, but the API is

• Similarly to the read command, “values” is not actually a list and cannot be

used as one until a dispatch has been issued

• You can also

MyRAM.writeBlock([... Data ...])

values = MyRAM.readBlock(Size)

MyRAM.writeBlockOffset([... Data ...] , Offset)

values = MyRAM.readBlockOffset(Size , Offset)

EXERCISE

• Add a 1024 x 32-bit block RAM to your payload

• Address the RAM with the bottom 10-bits of the IPbus address

• Make it readable and writeable by Ipbus

• Think carefully about the “ack”

• Create an entry for it in your address table

• Modify your python script to write a block of random data to it and read it

back

• Verify that you get back what you loaded

